Get GAMMA: Eulers Konstante, Primzahlstrände und die Riemannsche PDF

By Julian Havil

ISBN-10: 3540484965

ISBN-13: 9783540484967

ISBN-10: 3642366279

ISBN-13: 9783642366277

Jeder kennt die Kreiszahl p = 3,1415926…, viele kennen auch e = 2,7182818…, die foundation der natürlichen Logarithmen, und das image i für (Wurzel aus) -1. Und dann? Die "viertwichtigste" Konstante ist die unauffällige Eulersche Zahl (Gamma) = 0,5772156…, benannt nach dem genialen Leonhard Euler (1707-1783). Die Konstanten (pi) und e sind transzendent, aber guy weiß bis heute noch nicht, ob (Gamma) eine reason Zahl ist. Das Buch lotet diese "obskure" Konstante aus. Die Reise beginnt mit Logarithmen und der harmonischen Reihe. Es folgen Bernoulli-Zahlen, Madelungsche Konstanten, Zeta-Funktionen und Eulers wunderbare Identität. Nach welchem Gesetz sind Fettfinger in Wörterbüchern verteilt? Wie fährt guy mit Jeeps durch eine endlose Wüste? Wie kriecht ein elender mathematischer Wurm auf einem Gummiband? Wir erfahren von Harmonien in der Geometrie, in der Musik und bei Primzahlen! Unterwegs begegnen wir Euklid und Eratosthenes, Napier und Kepler, Gauß und Riemann, Cauchy und Tschebyschew, Hardy und Littlewood, den Hilbertschen Problemen, Hadamard und dem Primzahlsatz, von Mangoldts expliziter Formel, Selberg, Erdös und vielen anderen Mathematikern. Die Krönung ist die Riemannsche Vermutung, das berühmteste ungelöste challenge der Mathematik.

Aus Rezensionen der englischen Auflage

"Ein wichtiges Thema, zu dem viele bedeutende Mathematiker beigetragen haben. Der Autor gibt seinen Lesern einen erstaunlichen historisch-genetischen Überblick über ein Teilgebiet der Mathematik."

Paul Nahin, Autor des Buches "An Imaginary story. the tale of ." Princeton collage Press, Princeton 1998.

***

"Ein ausgezeichnetes Buch, das die Literatur bereichert. Julian Havil erzählt uns ein aufregendes Kapitel der Mathematikgeschichte."

Eli Maor, Autor des Buches "Die Zahl e – Geschichte und Geschichten." Birkhäuser Verlag, Basel 1996.

Show description

Read Online or Download GAMMA: Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung PDF

Similar popular & elementary books

Read e-book online Analytic theory of continued fractions PDF

The idea of persisted fractions has been outlined by means of a small handful of books. this is often one in every of them. the focal point of Wall's booklet is at the examine of endured fractions within the conception of analytic features, instead of on arithmetical points. There are prolonged discussions of orthogonal polynomials, energy sequence, limitless matrices and quadratic types in infinitely many variables, certain integrals, the instant challenge and the summation of divergent sequence.

Elementary geometry by Ilka Agricola and Thomas Friedrich PDF

Straight forward geometry presents the root of recent geometry. For the main half, the traditional introductions finish on the formal Euclidean geometry of highschool. Agricola and Friedrich revisit geometry, yet from the better perspective of college arithmetic. aircraft geometry is constructed from its easy gadgets and their homes after which strikes to conics and easy solids, together with the Platonic solids and an evidence of Euler's polytope formulation.

Additional resources for GAMMA: Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung

Example text

6) y1 (x2 − x1 ) = y2 (x3 − x2 ) und somit 1 1 x2 x3 (x2 − x1 ) = (x3 − x2 ): − 1 = −1 x1 x2 x1 x2 und x2 x3 = . x1 x2 Das bedeutet: Sollen die Fl¨ achen arithmetisch wachsen, dann m¨ ussen die xKoordinaten geometrisch zunehmen – ein deutlicher Hinweis auf ein logarithmisches Gesetz, das zwischen der Fl¨ ache unter y = 1/x und x besteht. 20 Newton und Nicolaus Mercator (1620–1687) entwickelten diese 19 20 Wir verwenden nat¨ urlich auch hier die heutige Schreibweise. In ye Hyperbola ye area of it bears ye same respect as its Asymptote which a logarithme doth its number.

In diesem entscheidenden Abschnitt definiert Napier seine Version des Logarithmus. Zun¨ achst nimmt Napier (wir beziehen uns auf Abb. 2 Des Barons wunderbarer Kanon 15 asentiert die m¨oglichen Werte von sin α ausRadius“ der L¨ ange 107 und repr¨ ” gehend von B durch Abst¨ ande l¨ angs der Strecke, wobei er 107 mit A und 0 mit B identifiziert. Der Punkt P startet bei A und bewegt sich in Richtung B mit einer Geschwindigkeit, die numerisch gleich seinem Abstand von B ist. Das bedeutet, daß die Anfangsgeschwindigkeit des Punktes gleich 107 und seine Endgeschwindigkeit gleich 0 ist (obgleich es unm¨oglich ist, das zu realisieren).

Setzt man m = 1, dann ergibt sich das Ergebnis f¨ ur Hn . 3 Hn ist fast immer ein unendlicher Dezimalbruch Wir haben H1 = 1, H2 = 1, 5 und H6 = 2, 45. Da Hn immer ein Bruch ist, muß dessen Dezimalentwicklung entweder endlich sein – wie in den soeben genannten Beispielen – oder aber sie ist ein unendlicher periodischer Dezimalbruch. ¨ Die abschließende Uberraschung ist, daß – mit Ausnahme der genannten drei F¨ alle – alle anderen Dezimalentwicklungen von Hn tats¨achlich unendlich periodisch sind.

Download PDF sample

GAMMA: Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung by Julian Havil


by Edward
4.0

Rated 4.42 of 5 – based on 29 votes